Why Does Binding of Proteins to DNA or Proteins to Proteins Not Necessarily Spell Function?
نویسندگان
چکیده
Studies of binding are often question: first, is the observed binding functional, and second, if it is, which function? Is it activation or repression? The first question relates to binding at different sites; the second relates to binding at similar sites. These questions apply to transcription factors binding to genomic DNA and to protein interaction domains binding to their partners. Here, we explain that both can be understood in terms of allostery and the cellular (or in vitro) environment. The idea is simple yet powerful; it emphasizes the role of allostery in defining whether binding between transcription factors and (cognate or noncognate) DNA sequences will lead to function and to the type of function. Allosteric effects are the outcome of dynamically shifting populations; thus binding to even slightly different DNA sequences will lead to different transcription factor conformations that can be reflected in the binding sites to their co-regulators. Currently, allostery is not considered when trying to understand how binding phenomena determine the functional outcome. Allosteric effects can enhance the binding specificity in a function-oriented manner. Here we provide a biological rationale that considers cellular crowding effects.
منابع مشابه
STU DIES ON THE BINDING OF THE ALKYLATING AGENT SULFUR MUSTARD TO CALF THYMUS CHROMATIN
In this study the effect of the alkylating agent, sulfur mustard, on calf thymus chromatin was investigated using UV/Vis spectroscopy, gel electrophoresis and thermal denaturation techniques. The results show that treatment of isolated chromatin with sulfur mustard releases histones from the core particles but does not affect histone H I and nonhistone chromosomal proteins. The content of ...
متن کاملDNA REPLICATION AND SYNTHESIS OF DNABINDING PROTEINS IN THE CHLOROPLASTS OF A CALLUS CULTURE
Continuous labelling of callus with H-thymidine results in intermittent peaks of H-DNA per chloroplast, showing synchrony of division. The increase in H-DNA could be due to several replication rounds, and the drop to successive plastid divisions without intervening DNA synthesis. The level of DNA-binding proteins in the chloroplast parallels the peaks of plastidal DNA synthesis; such pro...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملRapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملجداسازی پروتئین LMG از بافت کبد موش و میانکنش آن با
ABSTRACT In eukaryote cells, DNA is complexed with a series of basic proteins making units of chromatin structure named nucleosomes. In addition, nonhistone proteins with different function are the components of chromatin. Among these proteins, a group with a low mobility on gel electrophoresis have been identified and named LMG. In this study a LMG protein with a molecular weigh of 160 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010